1. Open ImageJ software:

2. Import magnetic resonance sequence:
```
& Open Folder 
```

3. Enter „Strg+|" to show info. Find dimensional data, e.g. slice thickness $=0.35 \mathrm{~mm}$, width $=25.6 \mathrm{~mm}$, height $=25.6 \mathrm{~mm}$:

4. Set the scale based on the dimensional data or a scale bar (with which the image comes) by drawing a line on the known distance. Then go on „Analyze" \rightarrow "Set scale..." and enter your specific values.
5. Identify all the images in which SAH can be seen (in these images T 2 hypointense areas marked with *):

6. Method A: Identify the slice with the biggest bleeding area and measure the craniocaudal length (=a) as well as the mediolateral length ($=b$) of the two orthogonal axes that span the ellipsoid SAH volume.

The ventrodorsal dimension (=c) of the ellipsoid shape can be estimated based on the slice thickness $[0.35 \mathrm{~mm}$] and the number of slices [6] on which SAH is seen.

Calculate the volume based on the formula:
$V=a b c / 2$.
$V=2.24 m m^{*} 0.637 m m^{*}\left(0.35 m m^{*} 6\right) / 2=1.498 m^{3}$
6. Method B: Select and alculate the bleeding areas separately:

Calculate the volume based on the formula:

[^0]
[^0]: $V=\left(A_{1}+A_{2}+\cdots+A_{x}\right) \cdot d$
 $d=$ slice thickness
 $V=\left(0.94 \mathrm{~mm}^{2}+0.97 \mathrm{~mm}^{2}+0.83 \mathrm{~mm}^{2}+0.68 \mathrm{~mm}^{2}+0.51 \mathrm{~mm}^{2}+0.47 \mathrm{~mm}^{2}\right)$ * $0.35 \mathrm{~mm}=1.54 \mathrm{~mm}^{3}$

